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for GaAs SAW applications. If temperature compensation is
required, it must be accomplished by other means such as thin-film
overlays [8] or digital compensation [9].
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Planar Millimeter-Wave Diode Mixer

N.J. CRONIN AND V. J. LAW

Abstract — A new mixer has been built, using a planar GaAs Schettky-
barrier diode, for operation at frequencies around 100 GHz. The mixer has
low noise temperature and conversion loss and low local oscillator power
requirement. The design is such that construction of scaled versions should
be possible for operation up to 200 GHz.

L

For frequencies above 100 GHz, most high-performance mixers
still utilize whisker-contacted Schottky-barrier diodes [1]. Satellite
borne applications in the short millimeter region are of increasing
importance, and there is thus a growing demand for systems
capable of withstanding the rigors of space flight. Whisker-con-
tacted diodes have been used in space [2] but more rugged and
reliable mixers are being sought. Excellent beam-lead diodes have
been developed in a number of laboratories around the world [3],
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Fig. 1. Planar GaAs Schottky-barrier diode.
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Fig. 2. Schematic representation of the planar diode process.

[4] but parasitics associated with the contact leads have limited
their use to around and below 100 GHz. There is a need,
therefore, to develop new mixers which combine the ruggedness
of the beam-lead structures with the high-frequency capability of
whiskered devices [5].

We report a new mixer, operating in the band 90 to 110 GHz.
The design utilizes a custom-built, planar, GaAs Schottky-barrier
diode soldered directly into a suspended-substrate stripline cir-
cuit without the use of bonding leads. This configuration exhibits
low parasitics and should not be subject to the frequency limita-
tions of conventional beam-lead designs.

II. THE D1oDE

Fig. 1 is a sketch of the overall configuration of the planar
diodes used. The devices were fabricated by a process which is
summarized in Fig. 2. Two different types of diode have been
assessed. Type-A were fabricated by the authors at the Plessey,
Allen Clark Research Centre, Towcester, England; type-B were
kindly loaned to us by Dr. B. J. Clifton of MLT. Lincoln
Laboratories, MA. Fig. 3 shows the dimensions of the type-A
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Fig. 3. Type-A diode.

devices. The characteristics of the diodies are as follows:

Type-A Type-B
Series resistance R <108 <108
Capacitance (Total,zero bias) 20-30 ff  20ff
Ideality =15 <11
Stray capacitance <5ff < 5ff

The diodes are designed as “flip chips,” that is, in operation
they are solder bonded, face down, into a circuit. The bonding
pads have been designed to match the circuit into which the
diodes are soldered in order to minimize their effect upon the
operation of the mixer.

III. MIiIxXER DESIGN AND ASSEMBLY

The mixer developed is of the split-block-type using sus-
pended-substrate stripline and reduced-height waveguide. Fig. 4
is a photograph of a partially disassembled mixer, Fig. 5 is a
sketch of the overall layout of the design, and Fig. 6 is a detailed
drawing of the suspended-substrate circuit.

The signal enters in WG 28 (WR 8), which tapers to half-height.
Power is coupled to the 50-Q line by a simple capacitive probe
coupler [6]. The optimum length of the probe was found to be
half of the height of the waveguide (i.e., one-quarter full height).
The diode is shunt-mounted to ground in front of a low-pass IF
filter [7] as shown in the figure. The filter is based upon a design
by Lidholm [8], and is scaled to produce a cutoff frequency of
around 80 GHz. The IF output and dc bias are through a 3-mm
SMA connector.

A full analysis of the mixer circuit awaits the outcome of
scale-model measurements currently under way. However, from
our millimeter-wave measurements, an approxiamte semi-em-
pirical formula may be given which enables a mixer to be
optimized for any required frequency in the range 90 GHz to 120
GHz. The critical dimension is that marked as X in Fig. 6. To
optimize the mixer for operation at a frequency of » GHz, the
required value is given by

X =—0.032» +4.35 millimeter.

The design of the mixer is such that assembly is very straight-
forward and requires no sophisticated bonding or whiskering
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Fig. 4. Partially disassembled mixer block.
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Fig. 6. The stripline filter circuit.

equipment. Simple soldering using low melting point indium
solder is used both for diode bonding and coupling of the
stripline to the SMA output connector.

IV. MIXER PERFORMANCE

The double-sideband conversion loss L and noise temperature
Ty xr of the mixer have been measured. The method adopted
was basically that of Weinreb and Kerr [9] in which a radiometer
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Fig. 8. Double-sideband conversion loss against local oscillator frequency.

incorporating the device under test is used to observe microwave
absorber at ambient and liquid nitrogen temperatures. Measure-
ments were made with the local oscillator frequency varying in
the range 90 to 110 GHz. The number of spot frequencies which
could be measured was limited by the availability of suitable
sources. Figs. 7 and 8 show the results obtained with four mixers,
otie of type-A and three of type-B. Conversion loss is quoted with
respect to the input waveguide flange and the IF output connec-
tor. No correction has been made for IF mismatch. The IF
frequency used was 3.9 GHz with an instantaneous IF bandwidth
of 80 MHz. L 4 o

Fig. 9 shows the conversion loss of mixer 3 as a function of LO
power. As can be seen from the figure, léss than 1 mW of LO
drive is required for optimum mixer noise temperature.

Fig. 10 shows the mixer IF impedance as a function of IF
frequiency. Here, the mixer was LO pumped at 95 GHz to a dc
current of 3 mA with a dc bias voltage of 0.55 V.

V. DISCUSSION AND CONCLUSIONS
The measured performance of our new mixer is comparable to
that of the current state-of-the-art beam-lead and planar diode
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Fig. 9. Mixer noise temperature and conversion loss as a function of local
oscillator power level.

Fig. 10. Mixer IF impedance.

TABLE1 .

COMPARISON OF BATH T){PE-A AND MULLAND 760CL5A
PERFORMANCE
e Bath- Mullard
Mixer Type A - 760CL5A
Frequency Range 90 - llb GHz 75 - 110GHz
Noise Figure 8.7 dB# 7.5dBa
L.O. Power 1mW 10mW

* Measured at 94CHz including 1dB. i.f. tontribution
and 3dB D.S.B. + 5.S.B. allowance

%% Measured at 85GHz including 1dB i.f. contribution

mixers, For comparison, Table I shows our results together with
those of a recent commercially available mixer from Mullard.

As may be seen from the table, our noise figure is marginally
worse than the commeicial component; however, we have al-
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lowed 3 dB to convert our double-sideband measurements to
single-sideband for comparison. This may well be too large an
increase since we are thereby assuming the mixer to respond
equally in both sidebands, which is unlikely given the resonant
nature of the diode-stripline-IF filter combination.

The local oscillator power requirement of our mixer is seen to
be relatively low; this becomes important if the design is to be
used at higher frequencies [10). Fig. 10 shows that there is some
residual IF mismatch at 3.9 GHz which could be removed by an
appropriate IF impedance matching transformer leading to a
further small improvement in performance.

The most significant advantage of the new design lies in the
simplicity of the structure. Given the availability of diodes,
a mixer with good performance can be assembled without
sophisticated bonding or whiskering equipment. Furthermore,
the reduction of all linear dimensions (including those of the
Schottky barrier) by up to a factor of two would appear to
present no difficulty either in diode processing or mixer circuit
construction and assembly. We, therefore, anticipate that the
same basic design can be used for operation up to 200 GHz.
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Scattering at an N-Furcated Parallel-Plate
Waveguide Junction

R. R. MANSOUR, STUDENT MEMBER, IEEE, AND
R. H. MACPHIE, SENIOR MEMBER, IEEE

Abstract —Using the conservation of complex power technique (CCPT),
this paper presents a solution to the problem of EM scattering at the
junction of a parallel-plate waveguide and an N-furcated parallel-plate
waveguide with arbitrarily spaced thick septa. Although this junction can be
regarded as an (N + 1)-port configuration, the problem is formulated so
that it is viewed mathematically as a generalized 2-port. This leads to very
simple expressions for the scattering parameters of the junction. Conver-
gent numerical results are presented for bifurcated, trifurcated, and 4-fur-
cated structures, and the effects of varying the thickness of the septa are
investigated. The formulation is directly applicable to N -furcated rectangu-
lar waveguide junctions having TE,, excitation, with application in the
design of E-plane filters.

I. INTRODUCTION

FElectromagnetic scattering at the junction of a parallel-plate
waveguide and a bifurcated parallel-plate waveguide with a sep-
tum of vanishing thickness has been studied by Mittra and Lee
[1], who provided analytical solutions using the residue calculus
method and the Wiener—Hopf technique. Moreover, a quasi-static
solution using the singular integral equation method has been
given by Lewin [2] for the case of a centrally located infinitely
thin septum.

Trifurcated waveguide junctions were treated by Pace and
Mittra [3], who considered the structure to be two bifurcated
junctions in tandeém; the overall solution was deduced with the
help of the generalized scattering matrix technique [1].

The N-furcated junction has also been considered, in early
papers, by Heins [4] and Igarashi [5]; however, their methods
apply only to equally spaced thin septa.

In regard to bifurcated guides with thick septa, one may use
the generalized scattering matrix technique, considering the junc-
tion as a bifurcated junction with a thin septum followed by a
step discontinuity [6]. However, it would be very laborious to
apply this technique repeatedly for the problem of an N-furcated
waveguide junction with N —1 arbitrarily spaced thick septa.

In some recent papers [7]-[9], the conservation of the complex
power technique (CCPT) has been used to obtain theoretically
exact solutions with numerically convergent results to the prob-
lem of scattering at certain waveguide junctions. In this paper,
the CCPT is applied to the specific case of the junction of a
parallel-plate waveguide and an N-furcated parallel-plate wave-
guide, as shown in Fig. 1. The thicknesses #;,1,, - ,¢y_; of the
N —1 septa are not necessarily equal, nor are the separations
between plates L,, L,, Ls,---,L, of the N waveguides; the sole
constraintisthat t, + ¢, + -+ -+t _+ L+ L, + --- + Ly =1L,
where L is the separation between plates of the guide which
forms the junction at z = 0 with the N-furcated guide. Note also
that the dielectric constant ¢,,, in each waveguide is arbitrary.

Although in this contribution we only consider the problem of
N-furcated parallel-plate waveguide junctions for TE, and TM,,
excitation, the formulation is also directly applicable to the
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